6 research outputs found

    Impulse voltage distribution and frequency response of intershield windings

    Get PDF
    Impulse voltage distributions in continuous disk windings are nonlinear, due to the small series capacitance of the winding. Consequently, transformer manufacturers often design large power transformers with interleaved windings to increase series capacitance, but in doing so reduce the value of the initial impulse voltage distribution coefficient α given by α = √(Cg/Cs), (1) where Cg is the shunt capacitance and Cs is the series capacitance of the winding. Sometimes fully interleaved windings are employed because they are more reliable, ensuring that the transformer will operate properly under lightning strike

    On the Control of Microgrids Against Cyber-Attacks: A Review of Methods and Applications

    Get PDF
    Nowadays, the use of renewable generations, energy storage systems (ESSs) and microgrids (MGs) has been developed due to better controllability of distributed energy resources (DERs) as well as their cost-effective and emission-aware operation. The development of MGs as well as the use of hierarchical control has led to data transmission in the communication platform. As a result, the expansion of communication infrastructure has made MGs as cyber-physical systems (CPSs) vulnerable to cyber-attacks (CAs). Accordingly, prevention, detection and isolation of CAs during proper control of MGs is essential. In this paper, a comprehensive review on the control strategies of microgrids against CAs and its defense mechanisms has been done. The general structure of the paper is as follows: firstly, MGs operational conditions, i.e., the secure or insecure mode of the physical and cyber layers are investigated and the appropriate control to return to a safer mode are presented. Then, the common MGs communication system is described which is generally used for multi-agent systems (MASs). Also, classification of CAs in MGs has been reviewed. Afterwards, a comprehensive survey of available researches in the field of prevention, detection and isolation of CA and MG control against CA are summarized. Finally, future trends in this context are clarified

    Renewable Energy Sources and Battery Forecasting Effects in Smart Power System Performance

    Get PDF
    In this study, the influence of using acid batteries as part of green energy sources, such as wind and solar electric power generators, is investigated. First, the power system is simulated in the presence of a lead–acid battery, with an independent solar system and wind power generator. In the next step, in order to estimate the output power of the solar and wind resources, a novel forecast model is proposed. Then, the forecasting task is carried out considering the conditions related to the state of charge (SOC) of the batteries. The optimization algorithm used in this model is honey bee mating optimization (HBMO), which operates based on selecting the best candidates and optimization of the prediction problem. Using this algorithm, the SOC of the batteries will be in an appropriate range, and the number of on-or-off switching’s of the wind turbines and photovoltaic (PV) modules will be reduced. In the proposed method, the appropriate capacity for the SOC of the batteries is chosen, and the number of battery on/off switches connected to the renewable energy sources is reduced. Finally, in order to validate the proposed method, the results are compared with several other methods

    Enhancing Power Quality in Microgrids With a New Online Control Strategy for DSTATCOM Using Reinforcement Learning Algorithm

    No full text
    https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8403205To mitigate the power quality issue in microgrids, a new online reference control strategy for distribution static compensator using the reinforcement learning algorithm is presented. The new controller is supposed to compensate the reactive power, harmonics, and unbalanced load current in a microgrid utilizing voltage and current parameters. Voltage controller is used to adjust the set point of the reactive power reference, whereas the current based controller tries to compensate the unbalanced load current in distributed resource network through the quadrature axis (q-axis) and zero axis (0-axis). The proposed control strategy is applied to an autonomous microgrid with a weak ac-supply (non-stiff source) distribution system under different loads as well as three-phase fault conditions. Different scenarios are studied and simulation results for various conditions are discussed. The performance of the proposed online secondary control strategy is also discussed in detail

    A Novel Method to Design Delay-Scheduled Controllers for Damping Inter-Area Oscillations

    No full text
    https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8509578The main problem of time delay in the application of remote signals is that it limits the contribution of the controller devices in damping inter-area oscillations, and thus to overcome this problem, we proposed a new time delayed controller in this paper. The controller takes the advantage of delay as a design parameter to solve the SVC contribution limitation problem resulting from delays in feedback loops. To determine the delay and controller parameters, an algorithm is proposed to minimize the rightmost real part of the electromechanical oscillation modes in the design stage such that the system robustness against the small variations of time delay is provided. The feasibility of the proposed method is evaluated by conducting a number of simulations on the standard four-machine and 16-machine 68-bus test power systems. The results reveal that compared to the existing methods, the proposed method not only exhibits a better damaging performance but also introduces a significant delay margin in a certain range of feedback delays
    corecore